Currents

8 | SAVE MONEY WITH BWP'S RESIDENTIAL PROGRAMS

 $This \ report \ contains \ vital \ information \ about \ your \ drinking \ water.$

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien.

Այս զեկույցը պարունակում է կարեւոր տեղեկություններ ձեր խմելու ջրի մասին։ Խնդրում ենք դիմել ջրի համակարգի հասցեով կամ հեռախոսահամարով հայերենով օգնություն ստանալ համար։ **MESSAGE FROM** THE BWP GENERAL **MANAGER**

> At Burbank Water & Power (BWP) our mission is to safely provide reliable, affordable, and sustainable utility services to our community.

In this edition of Currents, you will learn about:

- What BWP does to make certain our water is safe to drink
- Steps anyone can take to save on their bills
- How you can contribute to making our community more sustainable

The community has entrusted us with managing their water and electric services and I take that responsibility to heart. In this issue, BWP is work diligently to reliably deliver clean water to every tap in Burbank.

This report contains many tables of data, which can sometimes be confusing. If you have any questions, please contact us or scan the QR code to the left.

providing our annual Water Quality Report. I am proud of our staff who BWP is proud to report that our water meets or exceeds state and federal water quality standards.

LEARN MORE ABOUT BURBANK'S WATER QUALITY REPORT

My career has been dedicated to

public service and I am honored

to continue that as Burbank

Water and Power's next GM.

For questions you may call the Water Division at (818) 238-3500.

MANDIP SAMRA

General Manager

May 13, 2024

bwp-currents.com/water-reports

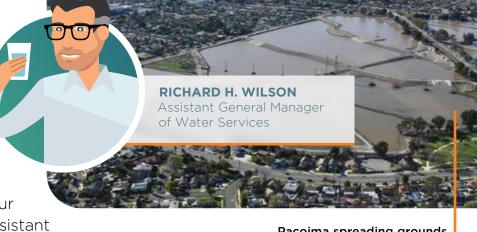
DID YOU KNOW?

Burbank uses an average of 12 million gallons of water per day. That's enough water to fill more than **18 Olympic-sized** swimming pools!

Every action taken today to save water is a small step forward in building a more sustainable future.

IN THIS ISSUE

- 03 2023 Water Update
- 04 2023 BWP Water Quality Report
- Per and Polyfluoroalkyl Substances (PFAS)
- Water Quality Educational
- Save Money with BWP's **Residential Programs**


- 10 Financial Assistance
- Dollar for Dollar, BWP Provides You the Best Value in the Region
- 13 Burbank EV Charging Map
- **Transform Your Lifestyle With** a Greener Space

2023

WATER UPDATE

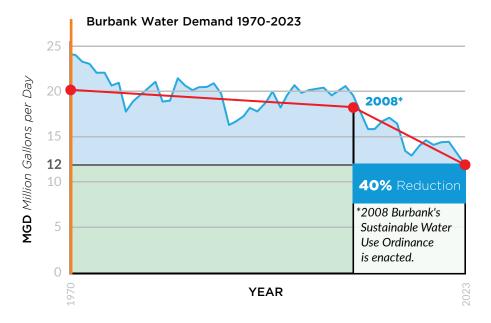
With the record-setting rainfall these past couple of years, you may be wondering whether we can ease up on our conservation efforts. BWP Assistant

General Manager of Water Services, Richard Wilson, helps explain why the answer to this question is not that easy.

Pacoima spreading grounds

THE CITY OF BURBANK **IS 100% RELIANT ON IMPORTED WATER**

Most residents are surprised when they hear that the water that falls from the sky belongs to the City of Los Angeles. Burbank cannot collect this water for storage, and we cannot pump the groundwater replenished by the rain. In 1979, the CA superior court ruled that naturally occurring ground water belongs to the City of Los Angeles. Since then, Burbank has relied on imported water from the Colorado River and the Sierra Nevada snowpack for 100% of our supply. This is the reason why local weather patterns have a limited impact on how much water is available for our community. When BWP considers easing up on water conservation there are several data points we look at:


- Snowpack in the Sierra
- The amount of water available from the California State Water Project (SWP)'s snowpack and reservoirs
- BWP's groundwater storage that is supplied by the SWP and purchased from Metropolitan Water District (MWD)

While Burbank has no ownership rights to local groundwater, groundwater storage is a critical component of BWP's drought resiliency plans. BWP can store imported water in the San Fernando Valley Ground Water Basin. When California receives an abundance of water, we proactively purchase more than we need and store it in the ground for later use. This helps ensure that Burbank will have access to water, even in the driest of times.

The record rain these past years has greatly improved the overall health of Burbank's water system. But getting through the drought was possible because we had proactively stored groundwater. Conserving water helps ensure we are making the best use of our limited water supply. Most recently it has also allowed us to use water from California's wet years to replenish our groundwater storage levels and be ready for the next drought.

Conservation is always going to be a way of life for Burbank, especially with our reliance on imported water sources. If we have water, we want the community to enjoy it, yet be mindful that water is our liquid gold, and at times, supply is limited.

13

2023 BWP WATER QUALITY REPORT

	2023	D \	V			VV.	A		:K	GI			IT	KEPUKI
	MICROBIOLOGICAL	L SAM	1PLIN	NG R	RESULT	ΓS								
п	Microbiolo	ogical (Contai	minar	nts		Unit	s MC	L MCLG				No. of months in	Typical Source of Bacteria
		-			165		Prese		0	CCRDL NA		detection 0	violation 0	Human and animal fecal waste
	E. coli (State Revised Total Coliform Rule) (a) Total Coliform Bacteria (b) State Total Coliform Rule						%	5.09		NA		2%	0	Naturally present in the environmen
	E. coli (Acute Total Colifor	m) <i>(c)</i> St	ate To	tal Co	oliform R	ule	(c)	(c)	0	NA		0	0	Human and animal fecal waste
	Total Coliform Bacteria (d)	Federa	ıl Revis	sed To	otal Colif	orm Rule	e %	TT	NA	NA		0%	0	Naturally present in the environme
	E. coli (e) Federal Revised T			n Rule			(e)		0			0	0	Human and animal fecal waste
J	Heterotrophic Plate Coun	t (HPC)	<i>(f)</i>				CFU/	mL TT	NA	1		TT	NA	Naturally present in the environmen
L	SAMPLING RESULTS SHOWING THE DETECTIO					ON O								
		of sam ollecte		Act	tion Leve (ppb)	^{el} P	HG	State DL CCRDL (percentile detected		lo. Sites eeding AL	Typica	al Source of Contaminant
	Lead (ppb) (g)	55			15	(0.2	5		ND		0		of household water plumbing systems;
	Copper (ppm) (g)	55			1.3	(0.3	0.05		0.4		0	0 ,	dustrial manufacturers; erosion of aching from wood preservatives
	SAMPLING RESULT	s sho	NWC	NG T	HE DE	TECTI	ON O	LEAD	AT BUSE	с	OLS			
		Schoo Lead S				ction el (ppb)	PHG	State D	LR/ No (RL) excee			es needing	Typica	I Source of Contaminant
		Leau 3	ampin	ng	Lev	ei (ppb)		CCRDL	KL) excee	aing AL	correct		nternal corrosion of	household water plumbing systems;
	Lead (ppb) <i>(b)</i>	2	22			15	0.2	5		0			υ,	istrial manufacturers; erosion of natura om wood preservatives
Ī	DISINFECTION BY-	PROD	UCT	'S AI	ND DIS	SINFEC	TANT	RESID	JALS				ioposito iodeimi.g ji o	wood proson values
1	PARAMETER			nits	State N		PHG	Sta	te DLR/	Running A		Lowest -	Ivr	oical Source of Contaminant
	Total Trihalomethanes (TT	HM) (i)		pb	80		NA	CCF	R DL (RL) NA	Avera 8.0	-	Highest 4.5-14		f drinking water disinfection
	Haloacetic Acids (HAA5)			pb	60		NA		NA	0.0		ND-2.4	<i>.</i> .	f drinking water disinfection
	Chloramines (j)	9				4.0 M	RDLG = 4	4.0	NA	2.0		0.2 - 3.3		er disinfectant added for treatment
	Bromate (k)			pb	10		0.1		1	1.4		ND - 14	-	f drinking water disinfection
ĺ	` '	NITAN		-	: \\/ITL	1 DDIM	I A D V D	DINKI	IC WATE	D STAN	ום א חו	1 5	, , , , , , , , , , , , , , , , , , ,	
DETECTION OF CONTAMINANTS WITH PRIMARY DRINKING WATER STANDARDS PARAMETER Units State PHG State DLR/ Burbank Lowest - Typical Source of Contaminant Historical Hist														
	PARAMETER		Units	MCL	(MCLG)	CCRDI	L (RL) W	ater (1)	lighest (m)			Тур	oical Source of Co	ontaminant
	INORGANIC CHEMICALS													
	Aluminum (n)	ppb 1,000 600 50 ND ND -83 Erosion of natural deposits; residue from some surfac ppb 10 0.004 2 ND ND Natural deposits erosion, glass and electronics produc			·									
	Arsenic		ppb ppb 1	10		100		98	ND - 110		ntural deposits erosion, glass and electronics production wastes scharges of oil drilling wastes and from metal refineries; erosion			
	Barium Chromium		• •	50	(100)	10		3.8	ND - 6.6			-		
	Fluoride Naturally-occurri	nσ	ppm	2	1	0.1		0.45	0.45 - 0.5		ge from steel and pulp mills and chrome plating; erosion of natural deposits of natural deposits in groundwater; discharge from fertilizer and aluminum facto			- ·
	·	Optimal Fluoride Control Range					e from Jeremzer and diaminant factories							
Fluoride Treatment-related ppm 2 1 0.1 0.50 0.46 - 0.8 Water additive that promotes strong teeth				trong teeth										
	Nitrate (as N)		ppm	10	10	0.4	4	5.1	ND - 6.1	Runoff	and leach	ning from fertili	zer use; sewage; nat	tural erosion
	Nitrate and Nitrite (as N)		ppm	10	10	N/	Α	5.1	ND - 6.0	Runoff	Runoff and leaching from fertilizer use; sewage; natural erosion			tural erosion
	RADIONUCLIDES													
	Gross Alpha Particle Activ	ity <i>(o)</i>	pCi/L	15	(0)	3		10.2	ND - 15	Erosion	of natur	al deposits		
	Gross Beta Particle Activit		pCi/L		(0)	4		4.3	ND - 5.3	•		l and manmade	e deposits	
J	Uranium		pCi/L	20	0.43	1		11.3	ND - 17	Erosion	of natur	al deposits		
	DETECTION OF CO	NTAN	4INA	NTS	WITH	SECC	NDAR	Y DRIN	IKING W	ATER S	TAND	ARDS		
	PARAMETER	Ur		State MCL		State I CCRDI		Burbank Water (I)	Lowest Highest			1	Typical Source of	Contaminant
	Aluminum (n)	р	pb	200	600	50		ND ND	ND - 83		idue fron	n water treatm	ent process; erosion	of natural deposits
	Chloride	pp	pm	500	NA	(1))	49	45 - 59	Rur	off or lea	aching from na	tural deposits; seaw	ater influence
	Color	Ur	nits	15	NA	(2))	ND	ND - 1	. Nat	urally oc	curring organic	materials	
	Odor	Ur	nits	3	NA	(1))	1	0 - 2	Nat	urally oc	curring organic	materials	
	Specific Conductance	μS/	/Cm :			(2)		743	591 - 76			•	n water; seawater ii	•
	Sulfate		pm	500	NA	0.5		83	78 - 10				tural deposits; indus	
	Total Dissolved Solids (TDS	5) pp	pm :	1,000	NA NA	(20))	458	362-47				tural deposits; seaw	
	Turbidity	N.	TU	5	NA	(0.1	1)	0.1	ND - 0.	1				vater. We monitor it because it is a goo inder the effectiveness of disinfectants.
	OTHER PARAMETE	RS OF	FINT	ERE	ST TO	CONS	UMER	S						
	PARAMETER		Units	_	State MCL		State DI		L Burbank Water (I)				Туріс	cal Source
	Alkalinity		ppm	1	NA	NA		(2)	207	94 - 2		Erosion of natu	ral deposits	
	Boron		ppb		NL = 1,000	NA	1	00	158	130-1	90	Runoff/leaching	g from natural depo	sits; industrial wastes
	Calcium		ppm		1,000 NA	NA	((1)	80	40 - 8	39	Erosion of natu	ral deposits	
	Chlorate (p)		ppb		L = 800	NA		10)	110	98 - 1			•	amination; industrial processes
	Corrosivity		Al		NA	NA		NA	13.0	12.4-1		Elemental balaı	-	. ,

PARAMETER	Units	State MCL	PHG	State DLR/CCRDL LCMRL (RL)	Burbank Water (I)	Lowest - Highest(m)	Typical Source
Hardness as CaCO3 (q)	ppm	NA	NA	(3)	290	146 - 320	The sum of polyvalent cations present in the water, generally magnesium and calcium; cations are usually naturally-occurring
Hexavalent Chromium (r)	ppb	NA	0.02	NA	3.7	ND - 5.5	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits
Magnesium	ppm	NA	NA	(0.1)	22	11 - 26	Erosion of natural deposits
Molybdenum	ppb	NA	NA	(2)	4.9	ND - 6.4	Erosion of natural deposits
N-Nitrosomorpholine (NMOR)	ppt	NA	NA	(2)	2.6	ND - 2.9	By-product of drinking water chlorination; industrial processes
pH	pH units	NA	NA	NA	8.3	8.1 - 8.4	Acidity and alkalinity of water
Potassium	ppm	NA	NA	(1)	4.5	2.5 - 5.0	Erosion of natural deposits
Sodium	ppm	NA	NA	(1)	42	40 - 64	Refers to the salt present in the water and is generally naturally occurring
Strontium (p)	ppb	HRL = 1,500	NA	2	900	900	Erosion of natural deposits
Total Organic Carbon	ppm	TT	NA	0.3	0.4	ND - 2.1	Various natural and man-made sources
Vanadium	ppb	NL = 50	NA	3	3.5	3.3 - 3.9	Naturally-occurring; industrial waste discharge
1,4-dioxane	ppb	NL = 1	NA	NA	0.87	ND-1	Discharge from chemical factories

PERFLUOROALKYL AND POLYFLUOROALKYL SUBSTANCES (PFAS)

RAW WATER MONITOING RESUITS									
PARAMETER	Units	State MCL	PHG	State DLR/ CCRDL	Burbank Raw Water	Lowest - Highest (1)	Typical Source of Contaminant		
6:2 Fluorotelomer sulfonic acid(6:2 FTS)	ppt	NA	NA	5	17.2	ND - 56			
perfluorobutanoic acid (PFBA)	ppt	NA	NA	5	7.8	ND - 19			
Perfluorobutanesulfonic acid (PFBS)	ppt	NL=500	NA	3	4.3	ND - 12			
Perfluoroheptanoic acid (PFHpA)	ppt	NA	NA	3	4.4	ND - 10	Industrial chemical factory discharges;		
Perfluorohexanesulfonic acid (PFHxS)	ppt	NL=3	NA	3	9.6	ND - 31	runoff/leaching from landfills; used		
Perfluorohexanoic Acid (PFHxA)	ppt	NA	NA	3	14.7	ND - 70	in fire-retarding foams and various		
Perfluoro-N-Pentanoic acid (PFPeA)	ppt	NA	NA	3	13.9	ND - 51	industrial processes		
Perfluorooctanesulfonic sulfonate (PFOS)	ppt	NL = 6.5	NA	4	4.4	ND - 6.5			
Perfluorooctanoic acid (PFOA)	ppt	NL=5.1	NA	4	3.8	ND - 7.4			
Perfluoropentanesulfonic acid (PFPeS)	ppt	NA	NA	4	4.2	ND - 8.6			

BLENDED TREATED WATER (MWD IMPORT AND GROUND WATER) MONITORING RESULTS

PARAMETER	Units	MCL	PHG	LCMRL (RL)	Burbank Water <i>(k)</i>	Lowest - Highest (1)	Typical Source of Contaminant
Perfluorooctanoic Acid (PFOA)	ppt	NL = 5.1	NA	4	ND	ND	Industrial chemical factory discharges;
Perfluorooctanesulfonic Acid (PFOS)	ppt	NL = 6.5	NA	4	ND	ND	runoff/leaching from landfills; used
Perfluorobutanesulfonic acid (PFBS)	ppt	NL=500	NA	3	ND	ND	in fire-retarding foams and various
Perfluorohexanesulfonic acid (PFHxS)	ppt	NL=3	NA	3	ND	ND	industrial processes
Perfluorohexanoic Acid (PFHxA)	PPT	NA	NA	3	ND	ND-3.9	LEARN MORE ABOUT
perfluorobutanoic acid (PFBA)	ppt	NA	NA	5	4.6	ND-8.5	
Perfluoro-N-Pentanoic acid (PFPeA)	ppt	NA	NA	3	4.3	ND-8.9	PFAS ON PAGE 6

ABBREVIATIONS:

Al Aggressiveness Index

CFU/mL Colony-Forming Units per milliliter

HRL Health Reference Level

MCL Maximum Contaminant Level

MCLG Maximum Residual Disinfectant Level Goal

NTU Nephelometric Turbidity Units

N Nitrogen

NA Not Applicable

ND Not Detected

NL Notification Level

PHG Public Health Goal

ppb parts per billion or micrograms per liter (μ g/L)

ppm parts per million or milligrams per liter (mg/L)

ppt parts per trillion or nanograms per liter (ng/L)

pCi/L picoCuries per liter

TT Treatment Technique

μS/cm microSiemen per centimeter

DLR Detection Limits for Purposes of Reporting

CCRDL Consumer Confidence Report Detection Level

FOOTNOTES:

(a) This Consumer Confidence Report (CCR) réflects changes in drinking water regulatory requirements during 2023. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2023.

(b) MCL for State total coliform is no more than 5% of monthly samples are positive. The MCL was not violated in 2023.

(c) E. coli MCL: The occurrence of 2 consecutive total coliform-positive samples, one of which contains E. coli, constitutes an acute MCL violation. The MCL was not violated in 2023.

(d) Total coliform Treatment Technique(TT) trigger, Level 1 assessments, and total coliform TT violations. No triggers, Level 1 assessments, or violations occurred in 2023.

(e) E. coli MCL and Level 2 TT triggers for assessments. No samples were E. coli-positive. No MCLs violations nor assessments occurred in 2023.

(f) All distribution samples collected for 2023 had detectable total chlorine residuals and as a result no HPC's were required.

(g) Lead and copper compliance based on 90th percentile being below the Action Level. Samples were taken from customer taps to reflect the influence of household plumbing. 55 homes were sampled in June/July 2023, none exceeded the action level for lead or copper. Water agencies are required to sample for lead and copper every 3 years according to EPA's Lead and Copper Rule.

(b) BUSD requested all 22 schools to be tested for lead at the drinking fountains and kitchen taps. Sampling occurred during the months of March and April of 2017 for a total of 101 sampling sites.

(i) Compliance is based on Locational Running Annual Average which is the average of the last four quarters in 2023.

Continured on the next page.

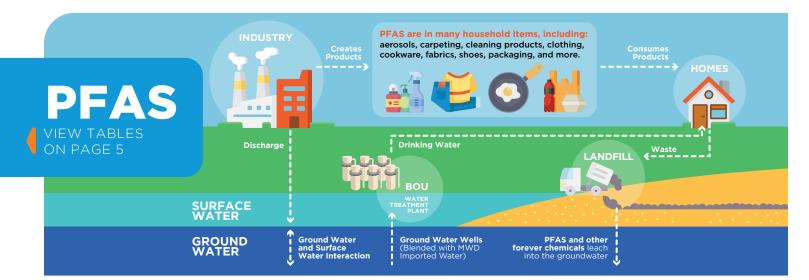
FOOTNOTES CONTINUED:

(j) Compliance is based on Running Annual Average which is the average within the distribution system in 2023.

(k) Bromate is formed from ozonation, and results are from MWD monitoring.

(1) Value shown is the average of the blended water (MWD water and local groundwater).

(m) The lowest and highest values from an individual source of water.


(n) Aluminum has primary and secondary MCL's.

(o) State MCL for Gross Alpha excludes radon and uranium. Compliance is based on adjusted gross alpha where radon and uranium are deducted.

(p) Data from 2014-2015 sampling.

(q) Hardness in grains/gallon can be found by dividing the ppm by 17.1. Burbank's water averaged 290 ppm for 2023 which is equivalent to 17 grains/gallon.

(r) There is currently no MCL for hexavalent chromium. The proposed MCL is 0.010 mg/L (10 ppb).

Per- and Polyfluoroalkyl Substances (PFAS) are a group of manufactured (human-made) chemicals that have been used and produced extensively for both commercial and industrial processes for decades. These long-lasting chemicals break down very slowly over time and have been called "forever chemicals."

There are thousands of different PFAS chains that have been identified. Some of them, such as Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have been more widely used and studied than others. Current scientific research suggests exposure to some types of PFAS have been linked to serious health effects, however, it is difficult to specify the health effects associated with PFAS exposure.

The State Water Resources Control Board (SWRCB) has established detection level requirements for each PFAS constituent and those will be identified as the Consumer Confidence Report Detection Level (CCRDL). Pursuant to Health and Safety Code section 116378 community and

nontransient noncommunity water systems are required to report any PFAS detection concentration above the established detection level in the water system's annual Consumer Confidence Report (also called the Water Quality Report.)

Additionally, the State Water Board has established notification levels (NL)1 and response levels (RL)2 for four PFAS chemicals including PFOA, PFOS, PFBS, and PFHxS.

Although PFAS were detected in a few samples from individual wells, the extracted water is blended with water from other wells which brings the overall concentrations to below the established regulatory levels. This blended water then goes through the Burbank Operable Unit (BOU) Granular Activated Carbon (GAC) vessels and the water is further diluted with Metropolitan Water District (MWD) treated import water before entering the distribution system, please refer to Blended Water Monitoring results table. It is important to note that although GAC has been

shown to effectively remove PFAS from drinking water, the BOU has not yet been permitted for PFAS treatment. BWP is working with SWRCBof Drinking Water to seek permit approval for PFAS removal at the BOU plant.

- Notification levels are nonregulatory, health-based advisory levels for contaminants that are established as precautionary measures.
- A response level (RL) is set higher than a notification level and represents a recommended chemical concentration level at which water systems consider taking a water source out of service or provide treatment if that option is available to them.

LEARN MORE

waterboards.ca.gov/drinking_water/certlic/drinkingwater/pfas.html

EDUCATIONAL INFORMATION

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (US EPA) and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the US EPA Safe Drinking Water Hotline (1-800-426-4791) or visiting their website at epa.gov/safewater.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. US EPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Nitrate: Nitrate (as nitrogen) in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. BWP is responsible for providing high quality drinking water, but cannot control the variety of materials used in private plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before drinking. You may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at epa.gov/safewater/lead or at BWP's website burbankwaterandpower.com.

Note: The water system operated by BWP does not have any lead-containing pipes.

The following definitions may be helpful in your understanding of our Water Quality Report:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and

technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG):

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the US EPA.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the US EPA.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level
Goal (MRDLG): The level of a drinking water
disinfectant below which there is no known or
expected risk to health. MRDLGs do not reflect
the benefits of the use of disinfectants to control
microbial contaminants.

Primary Drinking Water Standard (PDWS):

MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

This Water Quality Report reflects changes in drinking water regulatory requirements during 2021. All water systems are required to comply with the state Total Coliform Rule. Beginning April 1, 2016, all water systems are also required to comply with the federal Revised Total Coliform Rule. The new federal rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The US EPA anticipates greater public health protection as the new rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system.

6 | burbankwaterandpower.com

Save Money with BWP's Residential Programs

Your home is full of opportunities to save money. BWP can help with a wide variety of rebates and programs.

PROGRAMS

- **1 HOME IMPROVEMENT PROGRAM NO COST** - Faucet aerators, toilet retrofits, showerheads, etc.
- COOL REWARDS PROGRAM **\$75 INITIAL ENROLLMENT/\$50** for each additional year enrolled in the program
- **3** SHADE TREE PROGRAM **NO COST**
- 4 EV CHARGING STATION REBATE UP TO \$500
- 5 USED EV REBATE OPTO \$1,000

BUILDING ELECTRIFICATION

Swap your gas equipment for electric

- 6 INDUCTION COOKTOP \$200
- **7** GAS WATER HEATER TO A HEAT PUMP WATER HEATER - \$1,500
- R HEAT PUMP HVAC **\$1,000 PER TON**
- SERVICE PANEL UPGRADE when installed with a gas equipment swap **\$750** and others - **\$200-500**

WATER EFFICIENCY REBATES (

- A IRRIGATION CONTROLLERS \$150
- **B** RAIN BARRELS & CISTERNS \$35-350
- C TURF REMOVAL \$4/SQ. FT.
- **D** SPRINKLERS \$5/NOZZLE

- **E** FLOW MONITORING DEVICE
- F CLOTHES WASHERS
- **G** TOILETS \$100

LEARN MORE

To start your application go to. bwp-currents.com/3LozcHA

Scan with your phone's camera to go directly to the webage.

ENERGY EFFICIENCY REBATES*

- 1 ATTIC/WALL INSULATION \$0.15/\$0.10 SQ. FT.
- PROOM AC \$35/\$20
- **3** CEILING FAN \$25/\$15
- *Higher rebate for purchases made in Burbank, lower rebate for online and outside of Burbank purchases.

KEY

Partially Funded by MWD/SoCalGas

Funded by Low Carbon Fuel Standards (LCFS)

Federal Tax Credits available

8 | burbankwaterandpower.com BWP'S RESIDENTIAL PROGRAMS | 9

BWP FINANCIAL ASSISTANCE PROGRAMS

Struggling to make ends meet? BWP may have a program to help, regardless of income level.

LEARN MORE

bwp-currents.com/financial-help

Customer Program	Benefit	Income Limit (Family of 4)	Other Requirements		
HOME IMPROVEMENT PROGRAM	Reduce water and energy costs through efficiency	None	Agreement to allow installation of home upgrades, at no cost.		
LIFELINE RATE ASSISTANCE	40% off electricityNo 7% Utility Users Tax	\$63,050	62+ years old - or - have a disabled household member		
FEDERAL HOME ENERGY ASSISTANCE PROGRAM (HEAP)	utility bill assistanceweatherizationenergy efficiency	\$66,527	Apply for benefit at: bwp-currents.com/3xmd5NK		
LIFE SUPPORT RATE	No 7% Utility Users Tax	None	In-home life-support equipment		
BURBANK UTILITY SERVICE SUBSIDY (BUSS)	12% electric rate discount	\$99,870	None		
PAYMENT ARRANGEMENTS	Up to 24 months	None	None - Call (818) 238-3700 to talk to a service representative		
BUDGET BILLING	Will help level out energy and water costs to be paid throughout the year	None	Zero balance at the time of sign up. Customers may be on a payment arrangement. Call (818) 238-3700 to talk to a service representative.		

DOLLAR FOR DOLLAR, BWP PROVIDES YOU THE BEST VALUE IN THE REGION

99.999% RELIABILITY

BWP delivers an industry-leading 99.999% reliability with fewer power outages and faster restoration times than most other utilities.

LOWEST RATES IN THE REGION

Compared to our neighbors, BWP is giving customers some of the LOWEST electric and water rates in the region.

EFFICIENT OPERATION

BWP is doing our best to reduce costs wherever we can.

We have managed to save a lot of money – *more than* \$34 million in – in the last year.

BWP EARNS DIAMOND LEVEL DESIGNATION FROM APPA

Only 4% of Municipal Utilities in America received this achievement.

The American Public Power Association (APPA) is the voice of not-for-profit, community owned utilities that power more than 2,000 towns and cities nationwide. APPA has once again awarded BWP the Reliable Public Power Provider (RP3)® designation. This three-year designation recognizes our commitment to providing reliable and safe electric service, achieved through proficiency in reliability, safety, workforce development, and system improvement. Of the 253 utilities that received an RP3 designation, BWP is one of 85 to receive the highest possible Diamond Level Designation.

10 | burbankwaterandpower.com

THREE-STREAM COLLECTION IS HERE

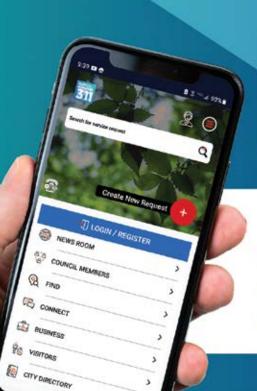
TECHNICAL ASSISTANCE IS AVAILABLE: zerowaste@burbankca.gov

All Burbank residents have a role in separating recyclables and organics to keep these resources out of the trash bin.

Burbank municipal code* mandates properties have three-stream service with disposal containers for recycling (blue), organics (green) and trash (black or grey).

COMMERCIAL PROPERTIES & MULTIFAMILY (5+ UNITS)

In accordance with California law, <u>SB 1383</u>, business owners and property managers must provide employee and tenant sorting education, and clear signage at disposal areas to prevent contamination.


Notification on proper sorting policy must be provided to new tenants within 14 days of occupancy, along with annual reminders to reinforce participation.

LEARN MORE:

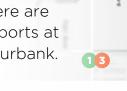
www.burbankca.gov/web/public-works/sb1383-business-requirements

*Burbank Municipal Code Title 4, Chapter 2 (effective April 15, 2022)

DOWNLOAD THE OUR BURBANK 311 MOBILE APP!

Use the Our Burbank 311 App to request:

- bulky item pickup
- street repairs
- ▶ and so much more!



Download the App for FREE from the Apple App Store or Google Play Store.

EV CHARGING THROUGHOUT BURBANK

We are committed to making EV charging easy. There are 100+ public charging ports at 26 locations around Burbank.

LEVEL 2 EV CHARGERS

BUENA VISTA LIBRARY

• 300 N. Buena Vista 8 chargers, 24 hour access

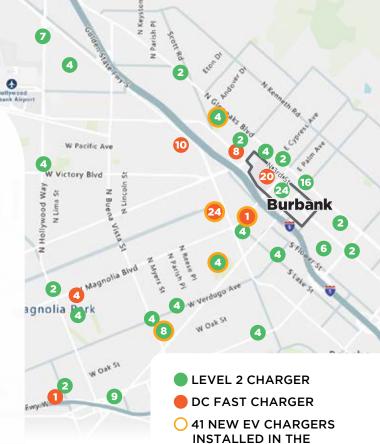
GEORGE IZAY PARK

• 1022 W. Clark Ave 4 chargers, 24 hour access

McCAMBRIDGE PARK

1515 N. Glenoaks Blvd 4 chargers, 24 hour access

Tesla opened up its EV connector design to the world, leading to an additional **52 EV fast charging** ports in Burbank for all compatible EV models to use for charging.


DC FAST CHARGERS

NORTH VICTORY BLVD.

• 677 N. Victory Blvd 24 chargers, 24 hour access

BWP ECOCAMPUS

• 110 W. Magnolia 1 charger, 24 hour access

LAST YEAR

BURBANK FIRE DEPARTMENT MEDICA WE DICA WE DIN

All Burbank residents are eligible to join. To enroll, call (818) 238-3486 or visit BWP-Currents.com/ems.

JOIN THE EMS MEMBERSHIP PROGRAM

Protect yourself and your loved ones from the high cost of emergency medical care.

Not all insurance plans provide coverage for emergency medical care and transportation charges. The Emergency Medical Services (EMS) Membership Program offers Burbank residents the opportunity to supplement their insurance plan and cover out of pocket costs for emergency medical care and ambulance transportation. Monthly and annual membership options are available at \$7 per month or \$84 per year.

By joining the EMS Membership Program, you and all permanent residents of your household receive, at no additional cost, emergency medical care and transportation to the nearest local receiving hospital 24 hours a day, 365 days a year, from anywhere within the City of Burbank.

TRANSFORM YOUR LIFESTYLE WITH A GREENER SPACE

Discover our resources to help you live more sustainably.

IN YOUR GARDEN ARE YOU LOOKING TO TRANSFORM YOUR GARDEN INTO A SUSTAINABLE OASIS?

Or maybe there's a small area of your lawn that you aren't sure what to do with. By making a few thoughtful changes, you can create a beautiful, eco-friendly space that conserves water and provides a haven for birds, butterflies, and other beneficial creatures.

Get inspired by our beautiful landscape design templates.

7 templates FREE!

Are you removing grass? Get a Turf Removal Rebate.

Up to \$10,000

Shade your property with trees with our Energy-Saving Trees Program.

Up to 3 trees

LEARN MORE AND GET ADDITIONAL GARDENING RESOURCES.

bwp-currents.com/water-conservation

IN YOUR HOME

ARE YOU PLANNING ON DOING SOME HOME IMPROVEMENTS?

Our Home Improvement Program can help your home become more comfortable and efficient through various energy and water saving improvements.

What you can get at no cost to you:

- Weatherization Services
- Ceiling Fans
- Duct Sealing
- Attic Insulation
- Energy-Saving Light Bulbs
- High Efficiency Toilet(s)
- Power Strips

- Water Efficient Showerheads
- Faucet Aerators
- Sprinkler System Check and Sprinkler Controller Programming
- Thermostatic Showerhead Control Valve
- Water Pipe Insulation

THERE'S NO COST TO PARTICIPATE

Call (747) 277-1599 to set up an appointment.

IN YOUR DAILY COMMUTE

ARE YOU CONSIDERING SWITCHING TO AN ELECTRIC VEHICLE (EV)?

Making the transition to an EV can significantly reduce your carbon footprint, contributing to cleaner air and a healthier planet. Additionally, with the rising costs of gasoline, driving an EV can lead to substantial savings on fuel over time.

Find the right EV for your needs with our Online EV Buyers Guide.

Rebates are available for residents who buy a used EV.

Install a level 2 EV charging station and get a rebate.

Rebate up to \$1,500

CRUISE ON OVER TO OUR WEBSITE

Visit bwp-currents.com/ev-program for more information on our EV programs.

IN YOUR BUSINESS

ARE YOU INTERESTED IN LOWERING YOUR ENERGY COSTS?

Our Business Bucks Program offers up to \$5,000 in energy efficiency improvements at no cost!

Available improvements through the program:

HVAC Systems

Lighting (+more!)

Refrigeration Systems

GET UP TO \$5,000 IN RETROFITS.

Call (877) 290-2590 to participate.

PRSRTSTD U.S. Postage PAID Van Nuys, CA Permit No. 72

ECRWSS

Always there for you!

Postal Customer

THERE'S MORE TO CURRENTS

Read this newsletter online and see past issues at *BWP-Currents.com/newsletters*

For the latest news and updates, follow us!

How to Contact Us

Customer Service: (818) 238-3700

Street Light Outages: (818) 238-3700

After-Hours Emergency:

(818) 238-3778

Currents Editors

Editor-in-Chief
JEANNINE EDWARDS
JJEdwards@burbankca.gov

Editor
ARMAND CANYON
ACanyon@burbankca.gov

Creative Direction and Design GREEN ACRES CREATIVE greenacresdesign.net

Visit us online at burbankwaterandpower.com

Powering the flow of life today and tomorrow.